MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

4037 ADDITIONAL MATHEMATICS

4037/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2010	4037	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2010	4037	13

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE O LEVEL – October/November 2010	4037	13

-			
1	$\sec x - \cos x = \frac{1}{\cos x} - \cos x$ $= \frac{1 - \cos^2 x}{\cos x} = \sin x \frac{\sin x}{\cos x}$ $= \sin x \tan x$	M1 M1 A1 [3]	M1 for dealing with sec and fractions M1 for use of trig identity
	(Alt: $\frac{\sec^2 x - 1}{\sec x} = \frac{\tan^2 x}{\sec x} = \frac{\sin x}{\cos x} \tan x \cos x$)	M1 M1 A1	M1 for dealing with sec and fractions M1 for use of trig identity
2	(i) ${}^7P_4 = 840$	B1, B1 [2]	B1 for 7P_4 only
	(ii) $4 \times {}^{6}P_{3}$ or $\frac{4}{7} \times 840$ 480	M1 A1 [2]	M1 for a valid method
3	$mx + 2 = x^{2} + 12x + 18$ $x^{2} + (12 - m)x + 16 = 0$ $(12 - m)^{2} = 4 \times 16$ leading to $m = 4, 20$ Alt scheme: $m = 2x + 12$ $(2x + 12)x + 2 = x^{2} + 12x + 18$ $x = \pm 4 \text{ so } m = 4, 20$	M1 M1, A1 [4] M1 M1 M1 A1 [4]	M1 for equation in x only, allow unsimplified M1 for use of ' $b^2 - 4ac$ ' M1 for solution of quadratic M1 for equating gradients M1 for elimination of <i>m</i> M1 for x and subsequent calculation for <i>m</i>
4	f(2) = 8 + 4k - 10 - 3 f(-1) = -1 + k + 5 - 3 (4k - 5) = 5(k + 1) leading to $k = -10$	M1 M1 M1 A1 [4]	M1 for use of $x = 2$ M1 for use of $x = -1$ M1 for attempt to link the two remainders
5	$a = b^{2}, 2a - b = 3$ $2b^{2} - b - 3 = 0 \text{ or } 4a^{2} - 13a + 9 = 0$ leading to $a = \frac{9}{4}, b = \frac{3}{2}$	B1, B1 M1 A1, A1 [5]	M1 for solution of equations leading to a quadratic. Final A1 – correct pair only.

	Page 5	Mark Scheme: Teachers			Syllabus	Paper
	GCE O LEVEL – October/Nov			010	4037	13
			1	1		
6	x = 2 or -4 or - Either $(x - 2)(x - 2$	B1 M1	B1 for spotting a solution M1 for attempt to get quadratic factor			
	or $(x+4)$ or $(3x+1)$	$(3x^{2} - 5x - 2))(x^{2} + 2x - 8)(x + 4)(3x + 1)$	A1 M1, A1 A1 [6]	A1 for o M1 for A1 for o	correct quadratic f dealing with quad correct factors all solutions	actor
7	(i) Graph of r	nodulus function	B1 B1 B1 [3]		hape 5 marked on y axis $\frac{5}{3}$ marked on x axi	
	(ii) Straight li	ne graph	B1 [1]	B1 for s	traight line with g	greater gradient
	(iii) $8x = \pm (3x)$	- 5)	M1	M1 for	attempt to deal wi	th modulus
	leading to	$x = \frac{5}{11}$ or 0.455 only	M1, A1 [3]	M1 for	solution	
8	(a) (i) $f_{min} = occur$	-10, rs when $x = -2$	B1 B1 [2]			
	(ii) e.g. <i>x</i>	>-2	B1 [1]	Allow a 1:1 func	ny suitable domai tion	in that makes f a
		$\left(\frac{y}{2}-1\right)$, leading to = 2(x + 1)	M1 A1 [2]		a valid method of function	finding the
	leadin	$\frac{x}{x} - 1 = 2(x + 1)$ ing to $x^2 - 5x - 6 = 0$ on $x = 6$ and -1	M1 DM1 A1 [3]	_	correct order r solution of quad	Iratic

	Page 6				Syllabus	Paper
		GCE O LEVEL – October/November 2010			4037	13
9	(a) $\int x^{\frac{2}{3}} - 6x$	$x^{\frac{1}{3}} + 9 dx = \frac{3}{5} x^{\frac{5}{3}} - \frac{9}{2} x^{\frac{4}{3}} + 9x(+c)$	M1 A2,1,0 [3]	M1 for -1 each	expansion and att error	empt to integrate
	(b) (i) $\frac{dy}{dx} =$	$=\sqrt{x^2+6} + x\left(\frac{2x}{2\sqrt{x^2+6}}\right)$	M1 A2,1,0 [3]	M1 for -1 each	attempt to different error	ntiate a product.
	(ii) $\int \frac{x}{\sqrt{x}}$	$\frac{x^2 + 3}{x^2 + 6} dx = \frac{1}{2}x\sqrt{x^2 + 6}$	M1 A1 [2]	M1 for	use of their answe	er to (i)
10	(i) $t = \sqrt{e^5} + t = 12.1$	-1 or $t^2 + 1 = e^5$	B1 B1 [2]			
	(ii) distance = $\ln 2$ or θ		M1 A1 [2]	M1 for	$s_3 - s_2$	
	(iii) $v = \frac{2t}{t^2 + 1}$	v = 0.8	M1, A1 [2]	M1 for	attempt to differe	ntiate
	$(iv) a = \frac{\left(t^2 + \frac{1}{2}\right)^2}{\left(t^2 + \frac{1}{2}\right)^2}$		M1, A1	M1 for or quoti	attempt to different	ntiate a product
	When $t =$	2, $a = -\frac{6}{25}$, or -0.24	A1 [3]	A1 all c	orrect, allow unsi	mplified
11	(i) $\tan x = \frac{4}{3}$	$x, x = 53.1^{\circ}, 233.1^{\circ}$	M1 A1, √A1 [3]		an equation in tan through on their f	
	$(4 \sin y -$	$1 = 4(1 - \sin^2 y)$ 1)(sin y + 3) = 0	M1 M1		use of correct iden dealing with quad	•
	$\sin y = \frac{1}{4}$, <i>y</i> = 14.5°, 165.5°	A1,√A1 [4]	Follow	through on their 1	4.5
	(iii) $\cos\left(2z+z\right)$	/	B1			
	$2z + \frac{\pi}{3} =$	$\frac{2\pi}{3}, \frac{4\pi}{3}$ so $z = \frac{\pi}{6}, \frac{\pi}{2}$	M1 A1, A1 [4]	M1 for	correct order of o	perations

	Pa	ge 7	Mark Scheme: Teachers' version			Syllabus	Paper	
			GCE O LEVEL – October/November 2010			4037	13	
10	EIT							
12		HER $3 = A \sin \theta$	$\frac{\pi}{6} + B\cos\frac{\pi}{4}, \ 3 = \frac{1}{2}A + \frac{1}{\sqrt{2}}B$	M1 A1	M1 for attempt at substitution A1 for correct equation			
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2A\mathrm{c}$	$\cos 2x - 3B\sin 3x$	M1	M1 for	M1 for attempt to differentiate		
		-4 = 2A	$\cos\frac{2\pi}{3} - 3B\sin\pi$	A1	A1 for all correct			
		<i>A</i> = 4, <i>B</i> =	$=\sqrt{2}$	A1, A1 [6]	A1 for each			
	(ii)	• 0	$\sin 2x + B\cos 3x \mathrm{d}x$	M1	M1 for	attempt to integra	te	
		$= \left[-2\cos^{2} \right]$	$s 2x + \frac{B}{3} \sin 3x \bigg]_0^{\frac{a}{3}}$	A2,1,0	-1 each	error		
		$=\left(-2\cos^{2}\right)$	$s\frac{2\pi}{3} + \frac{B}{3}\sin\pi - (-2) = 3$	DM1,A1 [5]	DM1 fo	r use of limits		
12	OR							
	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8x - \frac{1}{2}$	$-6x^2$	M1	M1 for	differentiation		
		Grad at A	= 2, perp grad = $-\frac{1}{2}$	M1	M1 for	use of $m_1 m_2 = -1$		
		At $A, y = 2$	2	B1	B1 for <i>y</i>	coordinate		
		Equation	of normal: $y-2 = -\frac{1}{2}(x-1)$	DM1	DM1 fo	r finding equation	of normal	
		<i>C</i> (0, 2.5)		A1 [5]	A1 ansv	ver given		
	(ii)	<i>B</i> (2,0)		B1	B1 for c	oords of <i>B</i>		
		$A = \frac{1}{2} \left(2.5 \right)$	$(5+2)\mathbf{l} + \int_{1}^{2} 4x^2 - 2x^3 dx$	M1	M1 for	area of trapezium		
		L	$\left[\frac{4x^3}{3} - \frac{x^4}{2}\right]_1^2$	M1 A1 DM1	A1 all in	attempt to integra ntegration correct r correct use of lin		
		$=\frac{49}{12}$ or 2	4.08	A1 [6]				